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Abstract .  

A novel susceptor concept for metal-mesh susceptors, designed to achieve uniform in-plane 
temperatures during induction heating, is documented. The process involves redirecting 
eddy-current flow patterns in the resistive-mesh susceptor by specifically designed cut patterns 
in the mesh. A theoretical model was developed to predict heat generation in metal-mesh 
susceptors with any described network pattern. Initial results for cut patterns show significant 
changes in heating compared to an uncut mesh. Cut patterns can be optimized to reduce 
temperature gradients in the susceptor to within the processing window of the composite. 
Experimental results are presented for qualitative comparisons. 
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1. Introduction 

Induction heating for nonautoclave or nonoven cure and bonding of composites is a novel 

approach that may reduce manufacturing costs. Induction heating is an ideal choice for 

supplying the energy needed for curing thermoset resins and adhesives or for thermoplastic 

bonding, which is a critical concern in field repair applications. Induction is a noncontact 

process that can heat geometrically complex parts that are difficult to heat with other bonding 

methods. 

Induction-heated bonding of composites consists of the heating of an interlayer susceptor and 

the subsequent melting, flow, consolidation, and bonding of two thermoplastic-based adherends 

or the heating, consolidation, and cure of a thermosetting adhesive. Induction welding of 

thermoset composites incorporating a co-cured thermoplastic interlayer is also possible [1]. 

Susceptors may be resistive, for joule heating, or magnetic, for hysteresis heating. For purposes 

of compatibility, the resistive susceptor can be a metallic screen or mesh (relying on joule 

heating) embedded in a matrix of the same composition as the composite being welded. The 

focus of this work is on polymer-impregnated metal-mesh susceptors for use in induction 

bonding and curing of composites. 

Several researchers [2-10] have conducted tests on the use of metal susceptors (in the form 

of screens or inserts) and resistive heating for bonding of composites. A common problem with 

metal-mesh susceptors subjected to a magnetic field is the resulting nonuniform temperature 

distributions. Induction coils typically generate nonuniform magnetic fields, though uniform 

fields can be generated for a few specific coil designs with limited work areas (center of a 

circular coil). Nonuniform fields result in temperature gradients exceeding the processing 

window required for composite heating or bonding. The focus of this work is on developing a 

new technique using a metal mesh with specifically designed cut patterns to generate uniform 

temperature distributions for nonuniform magnetic fields generated by the coil. The presence of 

cut patterns in a mesh alters the flow of induced eddy currents and, the cut pattern can be 

optimized to generate uniform temperature distributions. 
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Mesh density is also an important parameter. If the mesh is too coarse [4], in-plane 

temperature gradients between two mesh segments can be large. On the other hand, if the mesh 

is too fine [4], there can be poor resin flow across the mesh, resulting in poor bond strengths. 

Another common problem is the lack of resin material available for flow and bonding during 

healing and consolidation. Embedding the mesh in the appropriate polymer system mitigates this 

problem. 

This paper describes a heat-generation model, based on a resistive network-type approach, to 

predict heat generation in a mesh with cut patterns. Results for several simple cut patterns that 

show significant improvements in the uniformity of the heat-generation patterns in the mesh 

susceptor are presented. Experimental tests were performed by inductively heating coarse 

aluminum meshes, with and without cut patterns. A 1-kW Ameritherm induction heater, with a 

3.75-cm-diameter circular coil, was used for this purpose. Temperatures in the mesh were 

measured using infrared thermography. Qualitative comparisons of heat-generation patterns and 

measured temperature distributions are presented. 

2. Induction-Heating Process 

In a typical induction-bonding process, the susceptor (or heating element) is placed between 

two composite adherends to generate heat at the bondline. In order to have adequate resin flow 

and consolidation, the susceptor typically contains some resin, such as in resin-impregnated 

metal meshes, or an extra layer of resin can be added at the bondline. Consolidation pressure is 

generally applied by vacuum-bagging, though nonmetallic rollers may be used for additional 

pressure. The induction coil used is designed to "fit" the part, which is one of the major 

advantages of induction heating. The coil can be designed to fit complex part shapes and 

geometries. For large parts, the coil can be moved at a specified velocity to provide necessary 

heating. 

The two key requirements of the susceptor are: (1) uniform temperature distribution in the 

susceptor layer and (2) temperature control to avoid thermal degradation of the susceptor, resin 



at the bondline or the composite substrate. It is important to note that the use of "uniform 

temperature distribution" does not necessarily imply the equal heat generation throughout the 

susceptor. Instead, the focus is on maintaining the temperature within the processing window of 

the composite. Temperature gradients may occur within the susceptor and still remain within the 

processing window. Based on bonding models [11-13] for thermoplastics, this is a key 

requirement to ensure uniform quality and bond strength. 

For the metal-mesh susceptor, uniform temperature distribution can be achieved by the 

presence of cut patterns in the susceptor to redirect current flow paths. The cut patterns will also 

alter the heat-generation and heat-transfer mechanisms and an optimized cut pattern can be 

developed based on a combined heat-generation and heat-transfer model. Bondline temperature 

control can be achieved by feedback control based on temperature measurements by infrared 

thermometry or thermocouples of the input power to the system and by coil-susceptor design. 

The present effort focuses on modeling heat generation in a susceptor due to cuts in the mesh and 

experimental validation. Results for the combined heat-generation and heat-transfer model, cut 

pattern optimization, and bondline control will be published at a later date 

Predicting heat generation in a metal-mesh susceptor with cut patterns involves two main 

steps: (1) calculating the magnetic field generated by the induction coil and (2) calculating the 

heat generated due to the eddy currents in the mesh susceptor. 

3. Induction Coil 

Magnetic field generated by the coil was calculated based on fundamental electromagnetic 

principles. The general formula for the magnetic field intensity H, at some point P, due to an 

electrical current I in an element of conductor (Figure 1) is given by 

dH = ^^      [A/m], (1) 
47t  |r| 3 



where dl is an element of the current-carrying conductor and r is the position vector between 

the element dl and the point P. By integrating over the whole length of the conductor (the coil 

in this case), the magnetic field intensity H can be obtained at P, due to the entire induction coil 

of length L, as 

H=_Lfä[x£    [A/m] (2) 
4jt o   r 

The integral can become complicated depending on the coil shape necessitating the use of 

numerical techniques to evaluate the intensity at each point. The field was calculated over a 

40 x 40 grid on a surface (the area to be heated), which is some known distance from the coil. 

This is typically the case in an induction-heating application, where the work piece is placed at a 

specified distance from the coil. 

Figure 2 shows three commonly used coils and the Z component, Hz, of the generated 

magnetic field. Only the Z component of the generated field is of interest because it is the 

component normal to the surface of the mesh susceptor and causes heating. The circular coil 

pattern for generating uniform temperatures in the susceptor. However, circular coils are best 

suited for cases where the part to be bonded can be placed inside the coil, which, in general, 

represents a severe geometric constraint. Pancake and conical coils are the more commonly used 

"one-sided" coils, and they generate nonuniform fields. 

The spacing between the induction coil and the susceptor affects the magnetic field in the 

plane of the susceptor. Figure 3 shows the effect of increasing coil-susceptor spacing. Hz is the 

field intensity at the center of the coil, and Hzmax is the intensity at the same point for a 

separation distance of 0.1 mm, which was assumed to be the closest possible location of 

susceptor. The magnetic field drops exponentially with distance from the coil, as expected from 

equation (2), resulting in a similar reduction in the heat generated by the susceptor. However, 

metal-mesh susceptors require much smaller amounts of magnetic energy for heating compared 
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Figure 1. Calculation of Magnetic Field Due to a Current-Carrying Conductor. 

to bulk materials and, in some cases, the distance problem can be overcome by increasing the 

input power to the coil. One can also increase the frequency of the current in the induction coil. 

Typical metallic heating applications use kilohertz range frequencies, which may be increased up 

to several megahertz when higher heating rates are required. 

4. Cut-Mesh Concept 

In metal-mesh susceptors, heat is generated in each mesh segment due to eddy currents 

induced by an alternating magnetic field. The uniformity of current generated in the mesh 

depends on both the coil and the mesh configuration. It is a well-known problem that, for 

general or commonly used induction coils, the generated fields are nonuniform, resulting in 

nonuniform heat generation and significant temperature gradients over the mesh area. 

Experiments conducted with coarse aluminum meshes showed gradients of over 80°C in a 

6.25-cm x 6.25-cm mesh. 
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Figure 2. Typical Magnetic Fields (Z Component) Generated by Induction Coils on a 40 x 
40 Grid Surface Located 1 cm From Coil. Units Are -4JC HJL 
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Figure 3. Effect of Coil-Susceptor Distance on the Magnetic Field at the Susceptor. 

If a region of the mesh is considered, where the heat generation is the highest, removing one 

or more mesh segments will alter the induced currents. By selective removal of segments of the 

mesh, one can alter the induced current pattern such that the resultant heating patterns and 

temperature distributions are more uniform and within the desired processing window. This 

leads to the following design concept. 

Uniform temperature in a metal-mesh susceptor, subject to nonuniform magnetic fields, may 

be achieved by specifically designed cut patterns, based on the induction coil and mesh used. 

Mesh optimization is required to identify the best possible cut pattern. 

5. Heat-Generation Model 

5.1 Uniform-Mesh Calculations. The alternating magnetic field generated by the induction 

coil induces eddy currents in the mesh susceptor, and the resistance of the mesh material 



produces heat.   The induced electromotive force (emf), in a closed loop in the mesh, can be 

calculated from: 

m       n 

emf = 2TTf n0 JH. ndA = 271 f [i0 ^^HZj.dA (3) 
i=i   j=i 

where, f is the current frequency, Uo is permittivity in free space, n is a unit vector normal to the 

mesh surface, and Hz is the Z component of the magnetic field at the surface of the mesh. The 

double summation is used instead of the area integral, because of the field being calculated 

numerically, over an m x n grid (Figure 4). For example, if a 10 x 10 square mesh was used and 

the field calculated over a 40 x 40 grid, each mesh box would have a 4 x 4 grid of magnetic field 

values to calculate the emf. 

Coil 

Metal Mesh 

Coil-Mesh 
Separation 

m x n grid of points 
for magnetic field 

calculation 

Figure 4. Schematic of Coil and Mesh Configuration. 

Since the mesh has a number of closed loops and different loop shapes (in the case of cut 

patterns), a resistor network-type calculation was used to determine the emf s in each segment of 

the mesh. Each segment of the mesh was assumed to carry an unknown voltage or current. 

Current conservation laws were applied at each mesh box comer or node and along with the emf 

equations for each closed loop (induced emf equals the sum of voltages in the loop), and a set of 

linear algebraic equations was obtained, which is solved for the unknown currents. Knowing the 
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resistance of each segment (from wire geometry and material resistivity), the heat generated in 

each segment of a mesh box can be calculated. The following simple example of a 2 x 2 mesh 

illustrates the procedure. 

For the 2 x 2 mesh shown in Figure 5, with each mesh segment having resistance R, the 

induced emf and current conservation equations are as follows. 

Induced emf: 

Ii + h + h + U = emf i/R, 

-I3 +15 +16 +17 = eimVR, 

-I4 + Ig +19 +110 = ermVR, and 

-I9 - I? + Ii 1 +112 = emfVR. (4a) 

Current conservation at nodes: 

Ii = h, I5 = h, In = I12» Is = Iio» 

I2 = Is + Is, 

l6 = I7 + In, 

I9 +112 = I10» 

Ig + l4 = Ii, and 

I3 + I7 = 14 + 1». (4b) 

The resulting system of 12 unknown currents and 13 equations is solved to calculate currents 

induced in the mesh segments. Because the system of equations is linear, solving large systems 

for fine or high-density meshes is not a significant computational exercise and can be done in a 

relatively short time. Symmetry of field and mesh can also be used to reduce computational 

time. 
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Figure 5. Schematic of Induced Currents in a 2 x 2 Mesh. 

5.2 Cut-Mesh Calculations. To generate uniform temperature distributions within the mesh 

susceptor, segments of the meshes can be cut to redirect current flow within the mesh. Based on 

the applied field distribution, preferential heating will occur and cutting segments will force 

changes in the path of current flow in the mesh and can equalize heating to some extent. The 

current calculation technique outlined previously can be easily adapted for a cut-mesh case. 

Consider the same 2x2 mesh in Figure 5 with one of the segments cut, as shown in Figure 6. 

The induced emf and current conservation equations are as follows. 

Induced emf: 

Ii +12 +13 +14 = emfi/R, 

-I3 +15 + Iö +17 = enüVR, and 

-I4 - I7 + Ig +19 +110 = ennVR. (5a) 
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Figure 6. Schematic of Induced Currents in a 2 x 2 Mesh With a Cut Segment 

Current conservation at nodes: 

Ii = h , h = l6 > Is = Iio > I9 = I10» 

12 = I3 +15, 

Is +14 = Ii, 

16 = I7 +19, and 

13 +17 = I4. (5b) 

Comparing these equations with the uncut case, the induced emfs are different. Cutting one 

of the segments forces a "redirection" of the current loops, resulting in significantly different 

heat generation in each mesh segment. Larger meshes with more complicated cut patterns can be 

easily handled by this model. A computer program was developed for this purpose. Some 

heat-generation predictions for different cut patterns are presented in the results. 

The model outlined previously can successfully handle any cutout configuration in the mesh 

and predict the appropriate induced currents and voltages. Meshes of up to 40 x 40, with many 
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different cut patterns, were solved by this model. While the algorithm predicts heat generation, 

experimental verification requires estimating temperature as the mesh heats up, since 

temperature is the measured quantity. However, because induction heating is a rapid heating 

process, especially in metals, one can qualitatively compare measured temperature patterns to the 

predicted heat-generation patterns at short times. Integrating the mesh model with a heat-transfer 

model will allow actual temperature comparisons. 

One effect that can be neglected is the opposing field that is generated by the induced 

currents in the mesh wires, also known as "back emf." This field will oppose the applied 

magnetic field, as a result of which, the actual field is smaller. For sparse meshes, the opposing 

field effect will be small; however, if fine meshes are used, it may no longer be possible to 

neglect this effect. This effect was quantified by experiments where the frequency of the 

alternating current in the coil was noted with and without the mesh susceptor. If the inverse field 

effect is significant, a change in frequency is expected, with larger changes in frequency for 

larger inverse fields. For all the meshes studied, ranging from coarse 4 x 4 to finer 120 x 120 per 

square inch mesh density, there was no significant change in frequency (f = 275 kHz, Af < 

1 kHz), which implies a negligible back emf effect due to the mesh. Due to the negligible effect, 

the induction system can be designed to operate at any desired frequency. This effect is more 

prevalent in the case of bulk heating. 

6. Results 

The mesh model was used to predict heat generation in meshes with or without cut 

configurations. For the purposes of qualitative comparison with experimental temperature 

measurements, heat-generation values along the X- and Y-axis of the mesh were calculated. In 

all the modeling results presented, change in resistance of the mesh material was not considered, 

since the model only predicted heat generation and not temperatures. 
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A schematic of the experimental setup is shown in Figure 7. The induction system used was 

a water-cooled 1-kW Ameritherm system, with a frequency range from 50 to 450 kHz. The 

induction coil was fabricated from copper tubing, 0.125-in to 0.25-in outer diameter, to facilitate 

water cooling during operation. The coil shape, size, and geometry are design parameters and 

for the results presented, a 3.75-cm-diameter circular coil was used. The meshes used were 

coarse aluminum meshes with a mesh density of 4 x 4 per square inch and manufactured by 

Unique Wire Weaving Company. The meshes were not impregnated with any material, since 

there is no heat-transfer component in the mesh model to account for thermal conductivity of the 

material. Temperature measurements were made using an AGEMA Thermovision 900 infrared 

(ER.) system, which permitted far-field noncontact temperature measurements in the meshes. 

During heating tests, both the coil and the mesh were suspended in air and at a constant 

separation distance of 1 cm. 

Ameritherm System 
1 kW, 50 to 450 kHz 

Power Supply 

n 
Water 
Loop 

Induction y^ 
Coil 

AGEMA 
Thermovision 900 
Control Computer 

Mesh 

IR Camera 

Figure 7. Schematic of Induction-Heating Setup. 

6.1 Heat-Generation Model Predictions. Figure 8 shows typical heat-generation profiles 

for an uncut mesh for the four-turn pancake coil whose field is shown in Figure 2. The two 

curves show the profiles at the midlines of a 10 x 10 square (6.25 x 6.25 cm) aluminum mesh, in 

the X and Y directions. As expected, the heat-generation profiles are nonuniform, which is the 
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main drawback to using nonoptimal coil/mesh susceptor combinations. A mesh gradient factor 

(MGF), defined as 

MGF = 
Maximum Heat Generation 
Minimum Heat Generation 

(6) 

is used as a quality factor.    For the heat-generation profile in Figure 8, this factor is 

approximately 4.7, which implies a large temperature gradient along either axis. 

0.30-f 
i ■ ■ ■ ■ i i • ■ ■ i ■ ■ ■ ■ i ■ ■ ■ ■ i ■ t ■ ■ i ■ ■ ■ ■ i i I ■ ■ ■ ■ i 11 11 I 

Mesh Box 

Figure 8. Heat-Generation Profile for a 10 x 10 Square Uncut Aluminum Mesh: Pancake 
CoiL 

The response of three different cut patterns (Figure 9) to the four-turn pancake coil 

investigated are shown in Figures 10 and 11 with comparison to the uncut case. As expected, the 

uncut case shows the highest heat-generation differential along either the X or Y direction. The 

cut locations were chosen at points where the heat generation was maximum for the uncut case 

and for few cuts, a significant drop in the heat-generation gradient can be seen. 

14 
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Figure 9. Mesh Configurations for Cut/Uncut Case Studies. 
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Figure 10. X-Axis Heat Generation for a 10 x 10 Square Aluminum Mesh: Pancake Coil. 
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Figure 11. Y-Axis Heat Generation for a 10 x 10 Square Aluminum Mesh: Pancake Coil. 

The MGFs in the three cut cases are 4.5, 3.6, and 2.9, respectively, which compares 

favorably to the uncut baseline (4.7). The lower the ratio, the more uniform the temperature 

distribution wiU be. While it is expected that impregnation of the mesh with polymer will reduce 

the gradient somewhat, due to conduction in the polymer, the reduction will be small. This is 

because of the high heating rates in the mesh. One can further optimize the cutting pattern to 

identify the best pattern in terms of the final temperature distribution. This can be done by 

combining the heat-generation model with an unsteady-state heat-transfer model to predict 

temperature patterns. Finer meshes will also allow better control of the temperature distribution. 

6.2 Experimental Results. Experiments were conducted with coarse aluminum meshes to 

measure temperature distributions in the mesh during heating. Figure 12 shows the results for an 

uncut-mesh case, with measured temperature profiles and predicted heat generation along the 

X-axis and the Y-axis. The temperature profiles follow the predicted heat-generation patterns 

very well and this serves as a good qualitative check for the model. Actual temperature 

comparisons will be made after combining the heat-generation model with an unsteady-state 

heat-transfer model. 

16 



260-f 

U   240- 
o 

B 
CO 
M 
0) 
DH 

e 
0) 
H 

Si 
3 
CO 
cö 
O) 

s 

220- 

200- 

180- 

160- 

140- 

11 11 11 1 ■ ' ■ ■ I 11 11 11 i i ■ ■ ■ ■ i ■ ■ ■ t I ■ ■ ■ ■ i ■ i 11 l 11 i 

+  X - Measured T 
•  Y - Measured T 

-fi- X - Predicted P 
-©- Y - Predicted P 

1- 12 
TJ n 
(T5 

10 n 
i-f 
fD 
a 

8 ffi 
ft» 
»> 
T 
O 

6 3 m 
H su 
cr. 

4 o 
3 

- 2 

- 0 
Cfi 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

12 3 4 5 
Heating Zone in Mesh (cm) 

Figure 12. Temperature Profiles for Uncut Mesh viz. Predicted Heat Generation. 

Figure 12 shows a heating zone in the mesh, which is the area of the mesh that will show 

"uniform temperature distribution." Generally, the heating zone in the mesh is approximately 

the same as the coil area. Outside this zone, temperatures will be much smaller because of the 

rapid decay in magnetic field. Heating zones become important when coil motion is considered 

for large composite parts. 

The temperature differential between the maximum and the minimum points on the mesh is 

approximately 80°C (180 to 260°C). This is not an acceptable range, as typical processing 

windows are much smaller (e.g., AT = ±20°C). A designed cut pattern can be used to reduce the 

temperature differential, and an example is shown in Figure 13. In this example, the Y-axis 

temperatures are shown, comparing the measured temperatures for the uncut case in Figure 12 

with the cut case. The mesh patterns (uncut and cut) are shown in Figure 14. Cuts were made 

along segments showing high temperatures, since temperature patterns follow heat-generation 

patterns and the temperature differential drops from 80°C to 40°C.   There is also a drop in 
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Figure 13. Effect of Cut Pattern on Temperature Distribution in Mesh: Constant Time. 

Uncut Mesh 
1 
j 

Cut Mesh 

Figure 14. Mesh Patterns for Temperature Measurements. 

temperature for the same heating time (15 s), which can be rectified by heating for a longer 

period or increasing power (Figure 15). Increasing power or heating time did not change the 

temperature differential for a specific mesh configuration. Further optimization of mesh patterns 

(based on heat-generation/heat-transfer model) is necessary to further reduce the temperature 

differential within ±20°C. 
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Figure 15.   Effect of Cut Pattern on Temperature Distribution in Mesh: Constant 
Average Temperature. 

7. Conclusions 

A new concept for resistive-mesh susceptors, based on specifically designed cuts to obtain 

uniform temperature distributions in the bondline during induction bonding, was investigated. A 

resistor network-based model was developed to predict heat generation in a metal mesh for cut 

patterns of any size and shape. Theoretical and experimental results demonstrate that 

significantly reduced thermal gradients are possible using designed cut patterns. Qualitative 

comparisons of heat-generation predictions using the mesh model and measured temperatures of 

induction heated meshes agree very well. 

In order to use mesh susceptors for composite bonding, temperature predictions at the 

bondline (in the mesh) are critical, as bonding performance is directly influenced by temperature. 

The mesh model presented in this work is a first step toward developing a mesh-susceptor-based 

integrated bonding model. Future work will focus on combining the model with heat-transfer 

and bond-strength prediction models. 
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